Equations: In Plane Polar Coordinates: $\hat{r} = \hat{x}cos\theta + \hat{y}sin\theta$ and $\hat{\theta} = -\hat{x}sin\theta + \hat{y}cos\theta$

1. (10) Let's get the ol' pencils moving:
 (a) (4) Compare the vector torque about a point to the angular momentum about a point.
 (b) (4) Compare the divergence of a vector point function to the curl of a vector point function.
 (c) (2) Does it make sense to take the gradient of a vector point function? (yes, no)

2. For the simple harmonic oscillator having the equation $m\ddot{x} + b\dot{x} + kx = 0$
 (a) (11) Define m, b, and k. Draw a free body diagram illustrating all forces. Where is x
 measured from? Use your free body diagram to derive the above equation.
 (b) (3) Define in terms of constants above: γ, ω_0, and ω_1.
 (c) (6) Write down the solution for x and plot x versus t for the cases: (i) $\gamma < \omega_0$ (ii) $\gamma = \omega_0$ (iii) $\gamma > \omega_0$

3. A particle is “trapped” in the following potential energy well:

 (a) (10) Describe the motion (including points) for (i) $E = +2.0 \text{ J}$ (ii) $E = +1.0 \text{ J}$ (iii) $E = -0.5 \text{ J}$ and
 (iv) $E = -1.0 \text{ J}$
 (b) (4) If the mass of the particle is 100 grams, find its speed if $E = 0 \text{ J}$ and $x = 3.0 \text{ m}$.
 (c) (6) Draw the corresponding graph for the force.

4. (15) (a) Which of the following forces are conservative (i) $F = -kx$ (ii) $F = -\frac{GmM}{x^2}$ (iii) $F = -mg$
 (b) For those that are, find and plot the potential energy function which corresponds to it.

5. (10) In plane polar coordinates, (a) distinguish between the following: (i) r (ii) \hat{r} and (iii) $\hat{\theta}$.
 (b) Use a diagram to illustrate how r and θ relate mathematically to x and y.
 (c) Derive $\frac{d\hat{r}}{d\theta} = \hat{\theta}$ and $\frac{d\hat{\theta}}{d\theta} = -\hat{r}$

6. Assume you have a critically damped simple harmonic oscillator that at $t = 0$, starts at $x = x_0$, has
 an initial velocity of v_0, and is driven by an external force $F = F_0 e^{-at}$ where F_0 and a are constants.
 (a) (5) Write down the homogeneous solution. (b) (15) Find the particular solution. (c) (5)
 Explain how you would find the motion of the oscillator $x(t)$, and take it the first couple steps.
#1 (a) Vector Torque about point O
\[\mathbf{T} = \mathbf{r} \times \mathbf{F} \]
\[L = \mathbf{r} \times \mathbf{p} \]
Angular momentum about point O

(b) \[\nabla \cdot \mathbf{A} = \lim_{r \to 0} \frac{\mathbf{A} \cdot d\mathbf{r}}{r^2} \] A Scalar!

\[\mathbf{A} = \lim_{r \to 0} \frac{\text{Net Outward Flux through solid surface}}{\text{Volume } V \text{ enclosed}} \]

The component of the curl vector in a particular direction \(\mathbf{A} \) is
\[\mathbf{A} \cdot \mathbf{n} = \lim_{\Delta S \to 0} \frac{\mathbf{A} \cdot d\mathbf{r}}{\Delta S} \]

(c) No!

#2 \[m \ddot{x} + b \dot{x} + kx = 0 \]
(a) \(m \) is the mass
(b) \(b \) is the damping constant
(c) \(k \) is the spring constant

Equilibrium Position
\[m \ddot{x} = 0 \]
\[x = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m} \]

(b) \(\omega_0 = \sqrt{\frac{k}{m}} \)
\[m \ddot{x} + b \dot{x} + kx = 0 \]
\[s = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m} \]
\[\omega = \omega_0 \sqrt{1 - \frac{\omega^2}{\omega_0^2}} \]
\[x(t) = e^{-\frac{b}{2m}t} \left(x_0 \cos \left(\omega \sqrt{1 - \frac{\omega^2}{\omega_0^2}} t \right) + \frac{b}{2m} x_0 \sin \left(\omega \sqrt{1 - \frac{\omega^2}{\omega_0^2}} t \right) \right) \]

(c) \(x(t) = x_0 e^{-\frac{b}{2m}t} \cos \left(\omega \sqrt{1 - \frac{\omega^2}{\omega_0^2}} t \right) \]

#4 All forces are from F = \(kx \) and are conservative

(i) \[-kx = \frac{dV}{dx} \]
\[V = -\frac{1}{2} kx^2 \]

(ii) \[\frac{dV}{dx} = -\frac{GMm}{x^2} \]
\[V = \frac{GMm}{x} \]

(iii) \[\frac{dV}{dx} = mg \]
\[V = mgx \]

#5
\[r = \sqrt{x^2 + y^2} \]
\[\theta = \tan^{-1} \frac{y}{x} \]

(i) \(r \) is a scalar, the distance of point from origin
\[r = \sqrt{x^2 + y^2} \]

(ii) \(r \) is a unit vector directed radially outward
\[\mathbf{r} = r \mathbf{e}_r \]

(iii) \[\mathbf{r} \times \mathbf{r} = \mathbf{0} \]
\[\hat{r} \times \hat{r} = \mathbf{0} \]

Here \[\frac{d\mathbf{r}}{d\theta} = \hat{x}(-\sin\theta) + \hat{y} \cos\theta \]
\[\frac{d\hat{r}}{d\theta} = -\hat{x} \cos\theta + \hat{y} (-\sin\theta) \]
\[\frac{d\theta}{d\theta} = -\hat{x} \cos\theta + \hat{y} (-\sin\theta) \]

Please see next page for #6
6 Critically DAMPED Oscillator! Driven by $F = F_0 e^{-at}$

Immediately (a) \(x_H = (C_1 + C_2 t) e^{-\delta t} \) where \(\delta = \frac{b}{2m} + 5 \)

(b) \(\text{Driven!} \quad m \ddot{x} + b \dot{x} + k x = F_0 e^{-at} \quad \text{AND Note} \quad \delta = \omega_0 \quad \text{since critically damped} \)

Assume \(x_p = Ae^{-at} \)

Plug in and solve for \(A \)

\[
\dot{x}_p = A(-\delta)e^{-at} \\
\ddot{x}_p = A(-\delta)^2 e^{-at} \\
+ mA^2 e^{-at} - bAe^{-at} + kAe^{-at} = F_0 e^{-at}
\]

\(\Rightarrow A \left(ma^2 - b\delta + k \right) = F_0 \quad \Rightarrow \quad A = \frac{F_0}{ma^2 - b\delta + k} \)

\[x_p = \frac{F_0 \cdot e^{-at}}{ma^2 - b\delta + k} \]

\(\Rightarrow \) \(x_T = x_H + x_p \)

Apply BC: (1) When \(t = 0, \quad x_T = X_0 \quad x_0 = C_1 + \frac{F_0}{ma^2 - b\delta + k} \quad \Rightarrow \quad C_1 = X_0 - \frac{F_0}{ma^2 - b\delta + k} \)

(2) When \(t = 0, \quad \dot{x} = \dot{X}_0 \)

\(\dot{V} = \frac{dx_T}{dt} = C_2 e^{-\delta t} + (C_1 + C_2 t)(-\delta) e^{-\delta t} + \frac{F_0}{ma^2 - b\delta + k} (-\delta) e^{-\delta t} \)

At \(t = 0 \)

\(\dot{V}_0 = C_2 - \delta C_1 - \frac{F_0 \alpha}{ma^2 - b\delta + k} \)

\(\Rightarrow \quad \Delta C_2 = \delta C_1 + \frac{F_0 \alpha}{ma^2 - b\delta + k} + \dot{V}_0 \)

Hence,

\[x_T = \left\{ \begin{array}{l} \frac{X_0 - F_0}{ma^2 - b\delta + k} + \left[\dot{V}_0 + \delta \left(\frac{X_0 - F_0}{ma^2 - b\delta + k} \right) + \frac{F_0 \alpha}{ma^2 - b\delta + k} \right] t \right\} e^{-\delta t} + \frac{F_0 e^{-at}}{ma^2 - b\delta + k} \]