Physics 1110 Problem Set 1 Note: Include units in all problems

A. Write the following numbers in ordinary notation:
 1) $1 \times 10^5 \text{cm}$
 2) $1 \times 10^{-5} \text{sec}$
 3) $2.56 \times 10^8 \text{ft}^3$
 4) $73.89 \times 10^9 \text{BTU's}$

B. Express 55mi/H in km/H
 C. Express 720in^2 in ft2
 D. Express 6048in^3 in ft3

E. At a cost of $5.50 \text{ per square yard of material}$, how much will a person have to pay for a strip of material $4.0 \text{ feet wide by 20.0 \text{ feet long}}$?

F. A water faucet has a cross sectional area of 1.500 in^2. Suppose water flows from the faucet at a speed of 6.000 in/s. What volume of water flowing from the faucet during every second?

G. A horizontal force of 10.0 lbs. is exerted on a block in sliding it along a horizontal surface a distance of 7.2 ft. How much work has been done by the force?

H. A vertical force of 4.5 Newton is applied to a crate in order to lift it to a table 1.20 m high. How much work has been done by the force?

Solution to Problem Set 1: Usual rules: Please do not look at this until making an attempt (or using this to check your answer).

A.
 1) $100,000 \text{cm}$
 2) 0.00001sec
 3) $256,000,000 \text{ ft}^3$
 4) $73,890,000,000 \text{ BTU's}$

B.
 $1.6 \text{km} = 1 \text{mi}$
 Hence, $55 \frac{\text{mi}}{\text{H}} = \left(\frac{55 \text{mi}}{1 \text{H}}\right) \ast \left(\frac{1.6 \text{km}}{1 \text{mi}}\right) = 88 \frac{\text{km}}{\text{H}}$

C.
 $144 \text{in}^2 = 1 \text{ft}^2$
 Hence, $720 \text{in}^2 = \left(\frac{720 \text{in}^2}{1}\right) \ast \left(\frac{1 \text{ft}^2}{144 \text{in}^2}\right) = 5.00 \text{ ft}^2$

D.
 $1728 \text{in}^3 = 1 \text{ft}^3$
 Hence, $6048 \text{in}^3 = \left(\frac{6048 \text{in}^3}{1}\right) \ast \left(\frac{1 \text{ft}^3}{1728 \text{in}^3}\right) = 3.50 \text{ ft}^3$

E.
 The area of the material is $4.0 \text{ ft \times 20.0 ft} = 80 \text{ ft}^2$; However, $3 \text{ ft} = 1 \text{ yd}$, or $9 \text{ ft}^2 = 1 \text{ yd}^2$;

 $\text{Cost} = 80 \text{ ft}^2 \left(\frac{1 \text{yd}^2}{9 \text{ ft}^2}\right) \ast \left(\frac{$5.50}{1 \text{yd}^2}\right) = 49

F.
 This particular problem we have not determined how to do in class. However, one can deduce **from the units** (“dimensional analysis”) how to work the problem from what is asked for in the problem—i.e. what volume (in3) is flowing per second(s)? Indeed the volume rate of flow can be determined by multiplying the speed (or velocity) times the area. Hence $(6.00 \text{ in/sec})(1.500 \text{ in}^2) = 9.00 \text{ in}^3/$sec

G.
 $W = \text{Force \times distance} = (10.0 \text{ lbs})(7.2 \text{ ft}) = 72 \text{ ft. lbs}$.

H.
 $W = \text{Force \times distance} = (4.5 \text{ N})(1.20 \text{m}) = 5.4 \text{ joules}$