I. For an "RL" circuit as shown, the switch is closed at \(t = 0 \).

\[\frac{10}{b} \quad i = \quad \text{(1)} \]

After a long, long time, \(i = \) \(\text{(1)} \)

\(N_{db} = \) \(\text{(1)} \)

II. Let's now compare the above to what we have learned for an "RC" circuit.

For the RC circuit as shown, the switch is closed at \(t = 0 \).

\[\frac{10}{b} \quad i = \quad \text{(1)} \]

\(N_{ad} = \) \(\text{(1)} \)

\(N_{db} = \) \(\text{(1)} \)

And again, after a long, long time, \(i = \) \(\text{(1)} \)

\(N_{db} = \) \(\text{(1)} \)

III. Bonus (+1): You must get both! Choose from (a) resistor (b) inductor (c) capacitor.

In the \(\square \), the current cannot change instantaneously.

In the \(\square \), the voltage cannot change instantaneously.